Pulse dynamics and microbial processes in aridland ecosystems
نویسندگان
چکیده
1. Aridland ecosystems cover about one-third of terrestrial environments globally, yet the extent to which models of carbon (C) and nitrogen (N) cycling, developed largely from studies of mesic ecosystems, apply to aridland systems remains unclear. 2. Within aridland ecosystems, C and N dynamics are often described by a pulse-reserve model in which episodic precipitation events stimulate biological activity that generate reserves of biomass, propagules and organic matter that prime the ecosystem to respond rapidly to subsequent precipitation events. 3. The role of microbial C and N processing within the pulse-reserve paradigm has not received much study. We present evidence suggesting that fungi play a critical and underappreciated role in aridland soils, including efficient decomposition of recalcitrant C compounds, N-transformations such as nitrification, and nutrient storage and translocation of C and N between plants and biotic soil crusts. While fungi may perform some of these functions in other ecosystems, this ‘fungal loop’ assumes particular importance in the N cycle in aridlands because water availability imposes even greater restrictions on bacterial activity and physicochemical processes limit accumulation of soil organic matter (SOM). 4. We incorporate these findings into a Threshold-Delay Nutrient Dynamics (TDND) model for aridland ecosystems in which plant responses to pulsed precipitation events are mediated by a fungal loop that links C and N cycling, net primary production (NPP) and decomposition in aridland soils. 5. Synthesis . Arid ecosystems are highly sensitive to global environmental change including N deposition and altered precipitation patterns; yet, models from mesic ecosystems do not adequately apply to aridland environments. Our ‘fungal loop’ N cycle model integrates spatial structure with pulse dynamics and extends the pulse-reserve paradigm to include the key role of microbial processes in aridland ecosystem dynamics.
منابع مشابه
Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland
Precipitation regimes are predicted to become more variable with more extreme rainfall events punctuated by longer intervening dry periods. Water-limited ecosystems are likely to be highly responsive to altered precipitation regimes. The bucket model predicts that increased precipitation variability will reduce soil moisture stress and increase primary productivity and soil respiration in aridl...
متن کاملEcological Perspectives on Microbes Involved in N-Cycling
Nitrogen (N) cycles have been directly linked to the functional stability of ecosystems because N is an essential element for life. Furthermore, the supply of N to organisms regulates primary productivity in many natural ecosystems. Microbial communities have been shown to significantly contribute to N cycles because many N-cycling processes are microbially mediated. Only particular groups of m...
متن کاملPlant-soil feedbacks promote negative frequency dependence in the coexistence of two aridland grasses.
Understanding the mechanisms of species coexistence is key to predicting patterns of species diversity. Historically, the ecological paradigm has been that species coexist by partitioning resources: as a species increases in abundance, self-limitation kicks in, because species-specific resources decline. However, determining coexistence mechanisms has been a particular puzzle for sedentary orga...
متن کاملEditorial: Microbial Role in the Carbon Cycle in Tropical Inland Aquatic Ecosystems
Microorganisms have been recognized as central to nutrient mineralization and recycling in aquatic ecosystems since Lindeman's groundbreaking work on the trophic-dynamic aspect of ecology (Lindeman, 1942). Since the seventies, the development of new analytical technologies led to important conceptual perspectives, such as the microbial loop and the microbial food web (as summarized elsewhere, e...
متن کاملUniversality of Human Microbial Dynamics
Human-associated microbial communities have a crucial role in determining our health and well-being, and this has led to the continuing development of microbiome-based therapies such as faecal microbiota transplantation. These microbial communities are very complex, dynamic and highly personalized ecosystems, exhibiting a high degree of inter-individual variability in both species assemblages a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008